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Abstract-The nonlinear behavior of concrete-like materials in tension is chara<terised by strain­
softening. Phenomena involving the localisation of strain caused by strain softening can be analysed
accurately through the so-called "cohesive crack model" which uses the length of the fictitious crack
as a control variable. In this approach, the length of the process zone is not fixed and the ratio
between this length and the length of the specimen decreases with increasing size-scale. This
phenomenon is evident even for small changes in size. It can explain why, in four point shear test,
a critical size is observed, below which a secondary crack starts to propagate. This is a size-related
phenomenon of bifurcation of equilibrium path, which is predicted by the cohesive crack model
and confirmed experimentally. The theoretical results obtained by means of the cohesive crack
model involving two cracks are in good agre,:ment with experimental results. (9 1998 Elsevier
Science Ltd.

I. INTRODUCTION

Brittle and disordered materials such as concrete, rock, ceramics, etc. contain a large
number of flaws and micro-cracks. When these materials are subjected to high tensile
stresses, an interaction takes place in the process of microcrack growth. This phenomenon
gives rise to strain localisation within a very narrow band, where energy dissipation occurs,
while the material outside this zone behaves in a linear-elastic mode. According to the
concepts of continuum mechanics, it can be stated that in this band, referred to as process
zone, the bearing capacity is reduced (dlT < 0) as a consequence of an anelastic increment
in strain (de> 0).

This phenomenon, called strain-softening, represents a violation af the stability pos­
tulate dlT de ~ 0 (Drucker, 1988) and, therefore, makes the classical theory of plasticity
inapplicable. The consequences of this violation were investigated by many authors (Maier,
1971; Maier et al., 1973); they showed that, even in the absence of geometric instability
effects, the following phenomena may occur:

• loss of stability, in controlled load conditions (snap-through),
• loss of stability, in controlled displacement conditions (snap-back),
• bifurcation of the equilibrium path,
• loss of uniqueness of the equilibrium path,
• pathological dependence of the results on the type ofmesh used in the numerical analysis.

It is important to point out that whilst the material in the process zone is in a post­
critical stage, the structure as a whole may still be in a pre-critical stage not having yet
reached the maximum load. For this reason, despite the difficulties mentioned above, strain­
softening must be taken into account as an indispensable step to provide a better explanation
of many mechanical phenomena of interest for engineering purposes. For this reason, the
cohesive crack model was initially proposed in order to overcome some of the shortcomings
encountered when applying plasticity theory to the study of cracking in metals (Barenblatt,
1959; Dugdale, 1960). More recently, one modified version of the cohesive model called
fictitious crack model was proposed (Hillerborg et al., 1976). The latter model was applied
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primarily to concrete-like materials and was numerically implemented through a finite
element program.

Subsequently, by applying the cohesive model to Mode I (Carpinteri, 1985; Carpinteri,
1989), and mixed-mode problems (Carpinteri and Valente, 1988; Carpinteri et al., 1992;
Carpinteri et al., 1993; Bocca et al., 1991), it proved possible to account for the transition
from ductile to brittle behavior as a function of varying specimen size alone, the material
and all geometric ratios being the same.

In this investigation, the cohesive model is applied to the case of two cracks propagating
simultaneously.

2. THE COHESIVE MODEL APPLIED TO THE PROPAGATION OF TWO CRACKS

The cohesive model rests on the assumption that, as an extension of the real crack, a
fictitious crack (also referred to as process zone) is formed, where the material, albeit
damaged, is still able to transfer stresses which are decreasing functions of the relative
displacement discontinuity, as shown in Fig. 1.

It may, therefore, be stated that the cohesive model is based on a double constitutive
law; one is applied to the undamaged material and it is the classical linear-elastic relation­
ship between stresses and strains (Fig. 2a), while the other is applied to the process zone
and may give rise to two conditions (Fig. 2b) :

(Jc = (Ju(l- ~n.) for IVn> 0 (softening)
"' nc

(Jc ~ (Ju(l- ~n) for IVn= 0 (local rigid unloading)
l't- I1C

(I)

(2)

where (Jc is the closing stress and Wnis the related opening displacement (the dot denoting
derivation with respect to time). The tangential components acting on the fictitious crack
are neglected (T c = 0).

This is a first approximation hypothesis which is sufficient, however, to interpret
many laboratory tests. With the restraint and loading arrangements considered in this
investigation, it has been found that in numerical simulations, conditions (I) and (2) are
never simultaneously present at two points of a single crack. In other words, it can be stated
that, for each growth step of the two cracks, one of the following may occur:

(a) both cracks grow,
(b) the first crack grows, while second does not, even though it opens,

Fig. 1. The cohesive model represents the process zone as a fictitious extension of the real crack.
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Fig. 2. Double constitutive law: (a) for the undamaged material; (b) for the fictitious crack.

(c) the second crack grows, while first does not, even though it opens,
(d) the first crack grows and the second undergoes rigid unloading,
(e) the second crack grows and the first undergoes rigid unloading.

The hypothesis of rigid unloading on the part of both cracks has been ruled out, as the
restraint and loading conditions employed were specially designed to ensure specimen
splitting.

During the analysis, more than one of the five solutions describC'd above (a-e) may
turn out to be admissible from the static and kinematic viewpoints. If 1his is so, one of the
possible solutions is chosen according to the maximum energy release rate criterion, which
is also used in linear-elastic fracture mechanics (Nemat-Nasser et al., 1980; Nguyen, 1987)
and is a direct consequence of the basic la.ws of thermodynamics (Blzant and Cedolin,
1991 ).

Since both the constitutive laws illustrated in Fig. 2 are linear, by using the finite
element method and assuming the n nodal incremental displacements clu as the unknown
quantities, it is possible to impose the equilibrium condition through the principle of virtual
work, as follows (Carpinteri and Valente, 1988; Carpinteri et al., 1993; Bocca et al., 1991):

(3)

where

• superscript j stands for the jth step of the external cycle. At each step, either one or both
fictitious cracks grow,

• subscript i stands for the ith step of the internal iterative cycle. At each step, one of the
real cracks grows,

• LY) is the path dependent symmetrical (n >< n) matrix assembled by bringing together the
contributions from both constitutive laws. It depends on the real crack length (t r) and
fictitious crack length (tf ) of both cracks,

• F is the external load vector,
• dAY) is the external load multiplier increment.

Since displacement discontinuities can be taken into account only at the interface
between two elements, the crack trajectory not being generally known a priori, it proves
necessary to modify a portion of the finite element mesh with each fict"tious crack growth
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Fictitious Crack Tip (F.C.T.)

Fig. 3. The center of gravity of the dashed element is taken as the tip of the fictitious crack.

step. This is achieved through the rotary-translation motion of a finite element rosette (Figs
3 and 4) resulting in the automatic generation of a portion of the mesh.

Let us now examine the inner iterative cycle, omitting superscript j for the sake of
simplicity. If the L i matrix is non-singular, we get:

(8U') _IFA i = L, F. (4)

Having worked out strain values from the displacements and by applying the constitutive
law, it becomes possible to calculate (8a/8A),.

The cohesive model assumes that the fictitious crack spreads perpendicularly to the
principal tensile stress (aFCT) at the point where the latter reaches the tensile strength of
the material, au. At this point, referred to as fictitious crack tip (F.e.T.), the following
equation applies:

(5)

The nonlinear equations governing the growth of real and fictitious cracks are solved
through the following iterative cycle:

(8a;}~T), dA,+ I = au -aFcdui) (fictitious crack growth condition)

(l,h I = !(u,+ I) (real crack growth condition).

Fig. 4. Two consecutive positions of the fictitious crack tip.

(6)
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t r is used to refer to the length of one of the real cracks during the initial stage of the
iterative cycle, and to the length of the other crack during a subsequent stage.

For the problems examined it was found that the results do not change regardless of
the order with which the two real cracks are considered. At each increment in the i indicator,
only one cohesive connection is released. At the end of the iterative cycle (6) the following
two conditions must be verified:

apt ~ au everywhere in the solid (7)

(8)

where apt stands for the principal tensile stress. Should condition (8) be violated along one
of the two cracks, the iterative cycle (6) must be repeated taking into account the possibility
of rigid unloading along the crack which tends to close.

The lengths of the fictitious cracks (If! and tf2) are surely increasing monotone
functions of time during the irreversible process of crack growth. Conse:quently (Carpinteri
and Valente, 1988) the variable t I , relating to cracks that are able to propagate, is taken as
the control variable, and hence is increased by AtI (Fig. 4) in the direction chosen according
to the maximum principal tensile stress criterion:

(9)

3. NUMERICAL SIMULATIOI\ OF FOUR-POINT SHEAR TESTS

The experimental setup used for four-point shear tests is shown in Fig. 5 (Ferrara and
Morabito, 1989). The related restraint and loading conditions are illustrated in Fig. 6,
together with the finite element mesh used in numerical simulations (Schlangen and van
Mier, 1991; Carpinteri et al., 1993).

The material and geometric properties are listed in Table 1.
Since each specimen has a single notch, only the crack originating at the tip of the

notch will propagate at first. The evolution of the principal tensile stress at point A (aA) of
Fig. 6 (i.e. the point where the secondary crack is triggered) is plotted in Fig. 7 as a function
of the length of the primary fictitious crack (t r2 = to = 0).

The diagram in Fig. 7 shows a marked size effect on aA- It can be seen, in fact, that the
opening of a secondary crack may be triggered below a critical size. This size effect was
confirmed experimentally in the above-mentioned investigation (Ferrara and Morabito,
1989; Schlangen and van Mier, 1991; Carpinteri et al., 1993) which showed that all
specimens with H = 0.1 m broke in three pieces upon the opening of a secondary crack,
whilst all specimens with H = 0.2 or 0.3 m split in two, as illustrated in Figs 8, 9, and 13.

In this connection it should be noted that the growth of a crack, in a brittle and
heterogeneous material such as concrete, is the outcome of a process of coalescence of the
microcracks existing in the material before the application of the load. The presence of a
notch gives rise to a singularity in the state of stress which facilitates crack formation.
Conversely, the absence of notches involves a 35-45% increase in tensile stress, resulting
in the appearance of a crack. In this connection, Fig. 7 shows that, by increasing au by
40%, we obtain a critical size (H) comprised between 0.1 and 0.2 ill, in good agreement
with the experimental findings.

Let us now consider the case H = 0.1 m, involving the propagation of two cracks, in
both the theoretical model and in experimental reality. Figure 10 illu:;trates the evolution
of tfl and to as a function of the index j for the external cycle.

From this diagram, it can be seen that, with} ~ 6 at the initial stage, the primary crack
propagates (from the notch) ; during a subsequent stage, with 6 <} < 14, the secondary
crack spreads out from point A of Fig. 6. A third stage (14 ~) < 351 is characterised by
the simultaneous growth of both cracks. Finally, only the primary crack propagates during
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I: LVDT for the measurement of 01 deflection.

2: LVDT for the measurement of 02 deflection.

3: LVDT for the measurement of crack mouth sliding displacement (C.M.S.D.).

4: LVDT for the measurement of crack mouth opening displacement (C.MO.D.).

5: Reference bar for 0\ and 02 measurement

Fig. 5. Experimental setup for four-point shear test.
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Fig. 6. Mesh used for the four-point shear test.
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Table I. Material and geometric properties

Thickness (t) ao/H Mr E v cru '1 F
(m) (MPa) (MPa) (N/m)

0.1 0.2 H/50 28,000 0.1 2.4 122

H =: 0.50 m

___H =, 0.05 m

H ::0.10 m
H=: 0.20 m
H=:0.30m

30252015105
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Fig. 7. Principal tensile stress at point A of Fig. 6 as a function of Ii l' Single cr<.ck case (tn = 0).

-Oo4H -0.2H 0 0.2H O.4H
Fig. 8. Crack trajectories for H = 0.2 m (test results from Carpinteri et al., 1993).

a final stage (j ~ 35) simulated numerically. The analysis is interrupted when the finite
element rosette relating to the primary crack reaches the specimen's lower edge (Fig. II).

The two smallest eigenvalues (IX I and !X2) of L are plotted as a function of j in Fig. 12.
They approach zero simultaneously, for j = 36. Immediately before this happens, two
incremental solutions are possible in static and kinematic terms: with the first solution, the
primary crack grows and the secondary one stops propagating; with the other solution the
opposite is true. In this case, the choice must be made according to the maximum energy
release rate criterion. Since this criterion leads to the selection of the first solution, whereby
the secondary crack freezes, IXI and IX2 display a sudden increase, following a change of sign
of IXl alone.

During the following steps, the application of the maximum energy release rate criterion
always entails the growth of the primary crack only. Table 1 indicates that a value of
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-OAH -0.2H 0 0.2H 0.4H
Fig. 9. Crack trajectories for H = 0.3 m (test results from Carpinteri et al., 1993).
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Number of crack growth steps
Fig. 10. Length of the two fictitious cracks (tt 1 and tfl) as a function of the number of crack growth

steps.

-Secondary crack
Fig. II. Field of the total displacement corresponding to the last step of the numerical analysis

(displacements magnified 150 times).

I1tj = H/50 was used in the computations. In order to analyse how sensitive the predictions
are to this assumed value, the numerical simulations were repeated, assuming I1tt = H/40.
The crack trajectories (Fig. 13), the diagrams of total load vs crack mouth opening dis­
placements (Fig. 14) and total load vs crack mouth sliding displacements (Fig. 15) remain
the same. As shown in Fig. 10, the secondary crack stops growing when its fictitious length
reaches the value of 0.41 H. During the following steps, a local unloading condition
occurs on the secondary crack. Since a rigid unloading hypothesis is assumed, the opening
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Fig. 12. The two smallest eigenvalues of L vs the number of crack growth steps.

Fig. 13. Comparison between experimental and numerical crack trajectories, for the specimen sized
H=O.lm.
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o I ~

o 5.0 lQ-4 1.0 10-3 1.5 10-3 2.0 10-3

Non-dimensional crack mouth
opening displacement, C.M.O.D.lH

Fig. 14. Total load vs crack mouth opening displacement, for the specimen sized H = 0.1 m.
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1.5

1.0

0.5

I

One crack

Two cracks
Experimental results
(average values)

o
o 2.010-4 4.010-4 6.0 10-4

Non-dimensional crack mouth
sliding displacement, C.M.S.D.lH

Fig. 15. Total load vs crack mouth sliding displacement, for the specimen sized H = 0.1 m.

displacement of the secondary crack remains constant during these steps. This displacement
is the most sensitive response: it increases by 6% when I1t! is increased from H/50 to H/40.
At the present it is difficult to establish whether this sensitivity is due to numerical reasons
(mesh sensitivity) or to mechanical reasons (loss of uniqueness of solution due to strain
softening) .

4. COMPARISON BETWEEN NUMERICAL AND EXPERIMENTAL RESULTS

Figure 16 shows the diagrams of FJ, b) and F2, b2 for a specimen sized H = 0.1 m. In
this connection we may observe that:

(1) Numerical models with one or two cracks give roughly the same maximum load, which
is in good agreement with test results.

(2) The experimental deflection values b] and b2 are measured with reference to a stiff bar,
denoted with number 5 in Fig. 5. With this experimental setup, local deformation
effects at the lower restraints do not modify b] and b2 . On the contrary the scheme used
for the numerical simulations (Fig. 6) shows that b] and b2 are computed with reference

One crack

- _. Experimental results
(average values)

- - - Two cracks
1.0

0.5 \
\

\
Fr~---

0

0 0.001 0.002 0.003 0.004

1.5

Dimensionaless deflection, 'OIH
Fig. 16. F1, <>1 and F" 02 diagrams for the specimen sized H = 0.1 m. Comparison between theoretical

and experimental results.
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to the supports. Probably for this reason, both numerical models display greater
deformability.

(3) The numerical model involving a single crack shows that the post-peak portion in the
F)-b] diagram coincides with the pre··peak portion. Experimental reality is approxi­
mated more closely by the F)-b 1 diagram obtained through the numerical model
involving two cracks. In the latter model, in fact, the post-peak portion is distinguishable
from the pre-peak portion.

(4) Numerical and test results both show an F2-b2 diagram with no snap-back. Accordingly,
the b2 displacement is taken as the control variable in laboratory tests.

5. CONCLUSIONS

(I) From the four-point shear tests carried out (on specimens with a single notch) it can
be seen that there is a critical size below which a secondary crack starts to propagate.
This is a size-related phenomenon of bifurcation of the equilibrium path, which is
predicted by the cohesive crack model and confirmed experimentally.

(2) When several solutions are possible from the static and kinematic point of view, the
one corresponding to maximum energy release rate is chosen.

(3) The cohesive model involving two cracks approximates more closely the F]-b] diagram
obtained experimentally, compared to the single crack version of the same model.

(4) Figures 13-16 show that theoretical and experimental results are in good agreement.
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